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Uniform upper bounds are proven for the correlation functions in the strictly 
charge-neutral canonical and grand canonical ensembles for charge-symmetric 
two-component systems. For the grand canonical ensemble the increase of the 
correlation functions along the thermodynamic-limit sequence is shown as well, 
implying the existence of the states. The particles have bounded pair interactions 
of positive type. Both classical and quantum systems with Boltzmann statistics 
are considered. Coulomb systems with regularized interactions are included as 
a special case. 
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1. I N T R O D U C T I O N  

The existence of the thermodynamic limit (T-limit) for the thermodynamic 
functions of Coulomb systems is a well-known result due to Lieb and 
Lebowitz. (1) The existence of the thermodynamic states is a problem that 
has only partially been solved. Eventually one would like to prove the 
existence of states in the various statistical ensembles for the physical 
matter system, which is a quantum mechanical system of negatively charged 
fermions (electrons) and several species of positively charged particles 
which may be either fermions or bosons. However, we seem to be far away 
from such a goal. 
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So far, all results about the existence of states of Coulomb systems 
pertain to the unrestricted grand canonical ensemble (GCE), with the 
activities adjusted so that the mean charge is zero. We will call this ensem- 
ble the mean neutral GCE. Existence of the correlation functions at all 
temperatures and activities, in both classical and quantum statistical 
mechanics, has been established for charge-conjugation-invariant (sym- 
metric) systems with bounded interactions of positive type by Fr6hlich 
and Park. (2'3) For nonsymmetric classical systems, existence has so far 
been shown only for the high-temperature, low-density regime; in that 
case also the exponential clustering of the correlation functions was proved. 
These results are due to Brydges and Federbush. (4) Imbrie (5) gave a 
corresponding proof for jellium and inquired into the screening of 
fractional charges. 

The objective of the present paper is to proceed a small step further in 
the direction of extending the above-mentioned results to the other ensem- 
bles. More precisely, it will be shown that the results of Fr6hlich and 
Park (2) can be extended to the strictly neutral grand canonical ensemble, 
and at least part of that analysis to the (strictly) neutral canonical ensem- 
ble (CE) for charge-conjugation-invariant systems. In the strictly neutral 
GCE, the system is constrained to contain an equal number of positive and 
negative charges. In contrast, the mean-neutral unrestricted GCE allows 
for charge fluctuations about the strictly neutral case. A neutral CE, on the 
other hand, is automatically strictly neutral. The particles interact with 
continuous potentials of positive type. Coulomb systems with regularized 
interactions are included as a special case. Only the short-range regulariza- 
tion is required. There are no restrictions that come from the long-range 
character of the Coulomb interactions. 

To prove the existence of the states, one has to control the correlation 
functions along the T-limit sequence. For the mean-neutral unrestricted 
GCE for symmetric systems, Fr6hlich and Park proved uniform upper 
bounds on the correlation functions, and also the increase of the correla- 
tion functions along the T-limit sequence. Together these results imply the 
existence of the T-limit for the correlation functions, hence for the states. 
Their method was to use the Siegert representation ~6) and Ginibre's (7) 
technique of proving correlation inequalities. 

The Siegert representation is a representation of the correlation func- 
tions with the help of Gaussian functional integrals, combined with the 
Feynman-Kac formula in the quantum case. A predecessor of it is found 
in a paper by Stratonovich, (8) who worked with the second quantization 
formalism. In this representation some estimates are readily done which are 
outside of sight or at least obscured in the standard representation. In par- 
ticular, the classical correlation functions of charge-conjugation-invariant 
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systems in the mean-neutral unrestricted GCE can be written as an expec- 
tation functional in the form 

Q.(rl ..... r~) = c e  i ' k r  

1 

where c > 0 is a constant (with respect to volume and the Gaussian field 
variable ~b), ( - )  is an average, and O'k = + 1. The uniform (with respect to 
the volume) upper bounds ~n~<c n are immediately obtained from the 
elementary inequality t ( F ) I  ~< ( I F I ) ,  since here tFI = sup [FI = c n. 

To prove the increase of the correlation functions, Fr6hlich and Park 
made use of the following fact. In the mean-neutral unrestricted GCE the 
expectation functional ( . )  has the structure of a formal thermal average 
with formal Hamiltonian of a continuum analog of the plane rotator 
model. This allows one to apply Ginibre's (7) general formalism for proving 
correlation inequalities. For the discussion given below it is useful to 
mention here that the relevant inequality in refs. 2 and 3 is of the type 

(cos qt(r) cos ~( r ' ) )  - (cos ~b(r)) (cos ~b(r')) >~ 0 (1.1) 

It can be proved using duplicate variables and orthogonal transformations 
in field space. Using (1.1), the monotonic increase of the correlation func- 
tions along the T-limit sequence can be established by an interpolation 
argument. (a) The quantum version with Boltzmann statistics (2) has essen- 
tially the same features, except that c e  +-~~ has to be replaced by a Wiener 
integral (see also the Appendix). 

In this paper we show that the above analysis can be extended to the 
strictly neutral GCE and partly to the neutral CE. More precisely, we 
prove uniform upper bounds with respect to the volume and the total 
number of particles for the correlation functions in the neutral canonical 
ensemble for symmetric two-component systems. Corresponding bounds, 
with respect to the volume, for the correlation functions in the strictly 
neutral grand canonical ensemble are constructed as well. In a second step 
we can prove increase of the grand canonical correlation functions along 
the sequence, which together with the bounds allows us to conclude the 
existence of limits for the T-limit sequence of the correlation functions of 
the GCE. 

The Siegert representation will play a decisive role in the analysis. 
However, the techniques that have been used (2) for the mean-neutral 
unrestricted GCE need to be modified, to the extent that for parts of the 
program the Siegert representation has to be transformed further. 

To estimate the upper bounds, the Siegert representation is 
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appropriate, but instead of essentially a single inequality, (2) a sequence of 
inequalities is needed for the strictly neutral CE and GCE. It will also be 
shown that the special cases of the neutral correlation functions of the 
strictly neutral GCE are estimated from above in essentially the same way 
as done by Fr6hlich and Park. 

The results of Fr6hlich and Park already show that the second part of 
the program, i.e., monotonicity along the T-limit sequence, is harder to 
prove. Indeed, if one attempts to adapt the techniques of Fr6hlich and 
Park to the Siegert representation of the strictly neutral CE and GCE, one 
encounters new difficulties. In particular, the Siegert representation of these 
ensembles does not have the structure of a formal thermal average of plane 
rotator systems, but introduces structures which seem to require 
qualitatively new arguments to prove the existence of states. This problem 
can be overcome for the strictly neutral GCE. One can employ a second 
averaging process which in combination with the Siegert representation 
transforms the strictly neutral GCE into a form essentially identical to the 
"bare" Siegert representation of the unrestricted mean neutral GCE. The 
techniques of Fr6hlich and Park can be adapted and the increase of the 
correlation functions shown. A minor modification is that we will avoid the 
interpolation argument of ref. 2. 

In this averaged Siegert representation, the bounds for all the grand 
canonical correlation functions can now be obtained as in ref. 2, alter- 
natively. Nevertheless, the greater ease with which the bounds can now be 
obtained, as compared to the bare Siegert representation, is compensated 
by the additional effort of introducing the additional averaging. 

Unfortunately, so far it has proven elusive to establish the increase of 
the canonical correlation functions. The relevant inequalities that are 
needed to prove the increase are no longer of the type (1.1). On the other 
hand, they are also not too different, and it is possible to use the basic 
technical ingredients of Ginibre's formalism to manipulate the expressions, 
i.e., duplicate variables and orthogonal transformations in field space. 
Unfortunately the resulting expressions which are expected to be positive 
are not manifestly so. The author's opinion is that this is merely a technical 
difficulty and that one will eventually be able to show the increase. Since 
the calculations have not yet been conclusive they will not be included in 
the present paper, however. Instead, in Appendix B we supplement the 
present analysis by a new proof of the subadditivity of the canonical 
free energy (recovering a result due to Griffiths (9)) as well as strong 
superadditivity of the grand canonical potential (a new result). Strong 
sub(super)additivity of thermodynamic potentials is interesting for its own 
sake, but also since the technical difficulties are essentially the same as for 
proving increase of the correlation functions. 
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The results obtained here still pertain to symmetric systems which are 
neutral at least in the mean. For  other Coulomb-type systems the situation 
is more complicated. It can be inferred from the work of Lieb and 
Lebowitz (1) that a small amount  of net charge should be allowed in the 
system, but the T-limit then shows a capacity effect and becomes shape- 
dependent. This introduces additional complications even for symmetric 
systems. For  the physical matter system there are charges of different 
magnitudes and sign, and charge-conjugation invariance is lacking. An idea 
of what the problems might be in that case is mediated by a comparison 
between the proofs of the thermodynamic functions for the charge- 
symmetric systems (9) (see also refs. 2 and 3) and for the matter system31) 

Last, and not least, it should be mentioned that the upper bounds 
proved here and their counterparts proved in ref. 2 have potential further 
applications. They are useful for estimating certain expectation values of 
the physical observables. An application to the screening problem of 
Coulomb systems at high densities will be given in a subsequent work. 

2. BASIC SETUP 

The discussion will not be restricted to Coulomb systems with 
regularized interactions, but these are the prominent examples of the kind 
of system considered here. Therefore, in a convenient abuse of language, 
one may speak of positively and negatively "charged" particles also for the 
systems with non-Coulomb interactions. A system consists of two species of 
particles of equal and opposite charges. There is an equal number of 
positive and negative particles in a system. If gk, j ( l rk- - r j l )  is the pair 
interaction energy between two particles at positions rk and rj, then 
Vk, j = + V if the two particles belong to the same species, and Vk,j = - V  
otherwise. The function V : R + ~ { 0 } ~ N  has strictly positive Fourier 
transform. Such a function is said to be of positive type, for it defines the 
kernel of a positive bilinear form on some Hilbert space. In order to assure 
thermodynamic stability (1~ for all temperatures, 3 a further requirement is 
that the potential V is bounded above by Vo = V(0) < oo. We require V to 
be continuous, so that boundedness is automatically given. 

The Hamiltonian of a finite system is 

g (N) = K (N) -t" U (N) (2.1) 

3 If one drops the requirement that thermodynamic stability should hold for all temperatures, 
then V need not be bounded. An example is a classical Coulomb system in two space 
dimensions. Although the logarithmic singularity of the interactions does not allow for an 
extensive lower bound on the total potential energy of a microscopic configuration, the 
T-limit exists for high enough temperatures. 111,12) 

822/66/5~6 12 
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where 

2N 
K (N)= ~ (2mj) 1]pjl2 (2.2) 

j = l  

is the kinetic energy and 

U (N) = ~ Vk.;(Irk -- rjl) (2.3) 
l <~k<j<~2N 

the total potential energy, in standard notation. The potential energy 
satisfies the stability requirement U >1 - B N ,  with B = Vo, shown by Fisher 
and Ruelle. (1~ This implies quantum stability as well. (1~ That way already 
the classical Hamiltonian mimicks stabilizing quantum effects, although it 
is clearly only a crude approximation to more realistic fermion systems. 

For the classical case the finite system's canonical correlation functions 
on the phase space [~6N• with A c ~3 bounded, factorize into a 
momentum and a configuration-space part. The momentum part of the 
total correlation function is trivial, and this is true for the grand canonical 
ensemble as well. The objects of interest in the present paper are the 
configuration-space correlation functions for the canonical and grand 
canonical ensembles. 4 They are conveniently obtained from the marginal 
densities of the canonical probability density of a finite system. The canoni- 
cal configurational probability density (with respect to normalized 
Lebesgue measure; see below) is given by 

~7(N'A)(r 1 ..... r2N ) = N ! - 2 Z - 1  exp(--flU (N)) (2.4a) 

where 

Z(N, A) = N!-2  fA2u 
2N 

~ . , (N)  exp(--ptJ ) l~ ~c(d3r/) (2.4b) 
l = 1  

is the classical canonical partition function. The quantization of phase 
space is taken into account in the usual heuristic manner. In that sense, 
x(d3r) = 2~3d3r is the (heuristically) normalized Lebesgue measure, with 
)~dB = (h2fl/2nrh) 1/2 the thermal de Broglie wavelength. We denote by rh the 
geometric mean of m+ and m_.  Let us stipulate that in the further discus- 
sion m+ = m = m, for in the quantum case we have to postulate this for 
technical reasons. (9) In the classical case the generalization to m+ r  is 
straightforward. Explicit mention of fl as a variable of Z has been omitted, 

4 Since no  nonneu t r a l  sys tems will be considered,  the a t t r ibu te  "s t r ic t ly  neut ra l"  will  be 
d ropped  from now on except  in case we need to d is t inguish  between the two GCEs.  
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since /~ plays a trivial role in the considerations of the present paper. 
A marginal probability density q~U,,A) for n+ positive and n negative par- 
ticles, with n+ ~<N, is obtained by integrating (2.4a) with the normalized 
Lebesgue measure over all 2 N - n + -  n_ remaining variables. Instead of 
writing down here the explicit expression in the standard representation 
given by (2.4), a more compact form will be established in the next section. 

The canonical configurational correlation function p(U,A~ is given by 

p(N,A) = c(U; n+, n ) q~U,A) (2.5a) 
n + , n _  , _ 

with 

j 
c(N;n+,n_)= [I l-~ ( N - j ) ( N - k )  (2.5b) 

j = 0  k=O 

and w i t h j =  n+ - 1;/~ = n - 1. The convention I ~ [ ) o  ( N - k ) =  1 is to be 
employed if either n+ or n_ vanishes. For the GCE the corresponding 
correlation function Q(~ is (with f i=max{n+ n }) n+,t/_ 

Q(A~n+,, = ~=-1 ~ zZNZ(N, A) p(X+,A), _ (2.6a) 
N - - r ~  

where 

Z(A)= ~ z2NZ(N, A) (2.6b) 
N=0 

is the classical grand canonical partition function, and z = exp(/~#), with # 
the chemical potential. 

For the quantum mechanical systems the Hamiltonian (2.1) has to be 
interpreted as an operator. The particle density correlation functions are 
obtained from the configuration-space representation of the reduced den- 
sity matrices. This means that H (N) is acting o n  @~n=l  L2(A, d3rj), with 
p~ replaced by -h2V~. The classical configuration-space integrals have 
analogs in the quantum mechanical setting which are obtained from the 
configuration-space representation of Tr e--aH~u~. Gaussian integrals have to 
be combined with Wiener integrals. (6) The quantum mechanical version 
with Boltzmann statistics (2,6) is essentially a straightforward generalization 
of the classical one, although somewhat more complicated in the basic 
setting. However, the actual expected benefits of a quantum mechanical 
formulation of the Coulomb problem, namely the possibility of treating 
the exact Coulomb potential for a multispecies system that is not charge- 
conjugation invariant, if only one of the species consists of fermions, do not 
appear by this method. Thus, one does not gain the desired insight into the 
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physical matter problem (l) by a quantum version of charge-symmetric 
systems with Boltzmann statistics. For  that reason the quantum version, 
which is included for the sake of completeness, is only summarized in an 
appendix to this paper. 

3. GAUSSIAN FUNCTIONAL INTEGRAL REPRESENTATION OF 
THE CLASSICAL CANONICAL ENSEMBLE 

For  convenience, the representation of the density of the canonical 
equilibrium measure in terms of Gaussian function space integrals (6/ is 
recalled here. The representation of the other ensembles then follows. For  
a general discussion of Gaussian integrals on function space, and also for 
the Hilbert spaces ~ and ~oo which are mentioned below, see, e.g., 
Appendix A of the book by Glimm and Jaffe.  (13) Here it may suffice to 
think of Yg~ as the C ~ functions of rapid decrease at infinity, equipped 
with a Hilbert space structure, and ~ o0 as the space of tempered distribu- 
tions. For  further applications and discussion see also the early contribu- 
tions by Albeverio and Hcegh-Krohn,  (14) Edwards and Lenard, (15) and 
Stratonovich, (8) as well as Simon's book. (16) 

To rewrite exp(- /~U)  in terms of Gaussian integrals, for f e ~ j  let 
dT(q~) be the Gaussian measure on ~foo  with covariance/?V and mean 0, 
such that 

f e i~(f) dy(q~) = e (3.1) (1/2)(f ,f)  

with 

f dT((b) = 1 (3.2) 

where ( . , . )  is a positive-definite bilinear form on W~ x Jt~ with kernel 
flV (Minlos' Theorem). Averages 5 taken with that measure will be 
abbreviated by angular brackets, 

f .dT(q~) = ( . )  (3.3) 

Wick ordering is defined by 

:ei ' l '(f): = e(1 /2)<f , f>eiq~( f )  (3.4) 

5 There should be no confusion with the usual statistical averages. Angular brackets will be 
used from now on only as in (3.3). These should also not be confused with the brackets used 
in the introduction, there for mere simplicity. Furthermore, i is the imaginary unit. That 
symbol will not be used as an index, so that there should be no confusion here either. 
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which will take care of the finite self-energy terms. Furthermore, ~b(r) will 
stand for q~(f) i f f ~ 6 ( r ) ,  which is allowed since V is continuous by 
assumption. In that case, 

: e i ~ ( r ) :  =_ e(1/2)#v(O)eie)(r) (3.5) 

In addition, define 

YA[(b] = fA :e/~(~): ~c(d3r) (3.6) 

The argument r and the subscript A will be dropped in most of the 
following, except when it seems appropriate to emphasize one or the other 
dependence. Clearly, 

I/~12= t]c*12 = ~c/~* (3.7) 

where ~* means complex conjugate of 12 
For simplicity, let the negative particles have odd integers as indices 

and the positive particles even ones. Thus Vk.y= ( - 1 )  k+j V. If one now 
chooses f ~ ~2N ~ ( _ 1 )~ 6(rk), one obtains 

exp(--flu(N))= l ~I :exp[(--1)k+li~b(rk)] :> (3.8) 
\ k = l  

Integration over all coordinates gives, after exchanging the function-space 
integrals with the configuration-space ones, a compact expression for 
(2.4b), 

Z(N, A)=N!-2((/'~A ~r = N !  2<1YAI2N> (3.9) 

4. BOUNDS FOR THE CLASSICAL CORRELATION FUNCTIONS 

In this section the uniform upper bounds for the classical correlation 
functions will be proven. Recall that 

p ~U.A). = c( N; n +, n_ ) ~n+,.rItN'A) (4.1) 

(N,A) ~ n+ +n ) with t/ . . . .  e L  (A being a marginal probability density of (2.4). 
For further convenience, let us introduce some notation. For any X c N, 
let I X l = c a r d ( ~ ) .  Set c g = { 1 , 2  ..... 2 N } c N ,  and let X + c c g  with 
IX+ ] = n + ~< N contain only integers of the index set of the positive, respec- 
tively negative, species. In terms of the representation introduced in 
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Section 2, the densities of the marginal canonical measures are then given 
by 

) , ' N  n+  I f *  N n _  \ q(nU, An),= (] rAIZN~--1 ( . . . . .  =A - - A  / (4.2a) 

. . . .  ( r  U :eir U :e ir162 (4.2b) 
j ~ 2 / '+  k e o~_ 

P r o p o s i t i o n  4.1. The configurational correlation functions p~N:A) 
of the classical canonical ensemble for charge-symmetric, neutral systems 
are bounded from above by 

where h==-A(n+,n_)=(1/2)(n+ +n ) is the arithmetic mean of n+ and 
n_,  and po=23dBN/IAI. 

Remark. A canonical T-limit sequence is defined by an increasing 
mapping N~--~A(N), with N/IAI fixed, and A ~  3. The bounds given by 
Proposition 4.1 are uniform along any such sequence. 

To prove Proposition 4.1, the following lemma is useful 

Lemma 4.1. Let (X, ~ ,  drc) be a probability measure space, and 
G : X ~ R  + in LP(X, dzc) for all p e ( O , P )  (P might be o0). Then for any 
two positive reals a, b, with a + b ~< P, the following inequality for expecta- 
tions of powers of G holds: 

E~( G a + a) >1 E~( G a) E~( G b) 

The following is a very simple proof. 

Proof of  Lemma 4.7. Abbreviate a + b = c, and assume without loss 
of generality that a ~< b. For  ~ e ~ +, the mappings ~ ~ ~c/a and ~ ~ ~b/a are 
convex. Hence, 

E~( G ~) = E,~( Gb(C/b)) >1 [ E~( Gb) ] c/b = Eg( Gb)[ E~( Gb) ] a/b 

= E.(Gb)[E~(Ga(b/a))] a/b >~ E~(G b) E~(G ~) 

by applying Jensen's inequality two times. ] 

Remark. There are other ways of proving this lemma. It may be con- 
sidered as a special case of the more general inequality for simultaneously 
increasing functions, which was pointed out to me by J. Percus. A more 
indirect way is to prove it as a corollary of the generalized version of 
Theorem 197 of ref. 17 on convexity of the logarithm of power means, 
which was pointed out to me by B. Braams. 
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12 (N.A) Proof of Proposition 4.1. The first step is to estimate N. Z~/ . . . . .  
from above with the help of I ( f > l  ~< ( I f [  >, combined with (3.5) and (3.7). 
Using (4.2), this yields 

~n+,n  ~fN n+~,-:gN--n ><<en~v(o)(]~-12N 2ft} 

The second step is to use Lemma 4.1 for estimating 

(1 7~(-] 2N ) > (1 ~-lZN-Zn)(I ~-I 2'~ > 

The combination of steps one and two gives 

Application of Jensen's inequality now yields 

(1~12~> > (1~- 1>2h 

With 

(t:rAI } > ( r A }  = IA K(d3r) I&(~):ei~<r): : AA-~ IAi 

(by the elementary properties of the Gaussian integrals as described in 
Section 3), and with 

c(N;n+,n )<~N n-+" 

the proof of Proposition 4.1 is complete. 1 

For the strictly neutral grand canonical ensemble the corresponding 
estimate is done as follows. Let I t be the modified Bessel function <18) of 
order l, with le  r~ w {0}. Using the representation in terms of Gaussian 
functional integrals for the marginal canonical probability densities, the ZN 
for the partition function can immediately be carried out and reads 

~(A) = (Io(2Z I/-AI ) )  (4.3) 

which is readily verified by expanding the modified Bessel function Io into 
its Taylor series. The correlation function (2.6a) becomes 

a (a) = ~ ( A )  -1 z 2N J~ )! (4.4) 
. . . . . . . . . .  ( N - n +  ( N - n  )!/  N=h 

with ~ + , ,  given in (4.2b). The sum in (4.4) can be carried out as well, to 
yield a more compact expression for (4.4); however, that is not as 
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immediate as for the partition function (see the next section). For our 
present purposes (4.4) is already fully satisfactory to allow for a simple 
proof of the following result. 

Proposition 4.2. The configurational correlation functions n (A~ ~ n + , n -  

of the strictly neutral classical grand canonical ensemble for charge- 
symmetric systems are uniformly bounded from above by 

n + , n  

with fi as defined in Proposition 4.1. 

For the proof we recall an integral representation of modified Bessel 
functions, (18) 

fo 1 e . . . .  0 cos(kO) dO (4.5) Ilkl (x) = ~ 

for keT/. 

Proof  of  Proposition 4.2. Since all individual terms in the series 
(4.4) are positive, an upper bound is obtained by replacing the integrands 
of the functional averages in (4.4) by their absolute values. Using (3.5) and 
furthermore (3.7), we find the estimate 

~(A) ~< z2ae~/~v(o ) (Itql(2Z I~1) 
"+'"- (/o(2Z t r l )>  

where q = n +  - n  is the net charge number of the correlation function. 
Again, this is readily verified by expanding Iiq I into its Taylor series. 

The claim now follows from the pointwise inequality I o ( x ) -  Iiql(X)>1 0 
for x e N +, which in turn is easily shown by using the integral representa- 
tion (4.5) for the cases k - - 0  and k =  [q[, and furthermore noting that 
1-cos( . )>~0.  | 

The special case n+ = n_ = n, so that n = 6 = t  i, deserves additional 
attention. The correlation functions (2.6a) now obviously reduce to 

Q (nA, ), = zZn ( Io( 2Z ' I" ) } - I I ~I :e(-1)k + ~ iO('~): Io( 2Z l l" ) ) 
k = l  

z2nI~ :e ( 1)k+~ir (4.6) 
k ~ l  
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where for simplicity Y+ u Y_ = { 1, 2,..., 2n } has been chosen. The expecta- 
tion functional E]  is defined by (4.6). It follows immediately from 
IF[f~l ~< ~[fl~ and (3.5) that 

~(A) z2nenflV(O) ,,, ~ (4.7) 

The bounds of the neutral correlation functions of the strictly neutral GCE 
are obtained like the general bounds in the mean-neutral unrestricted 
GCE. (2) Note that the expectation functional [~.~ does not appear to have 
the structure of a thermal average; however, E'~ is a sine-Gordon measure 
in the sense of Kennedy. (19) Consequently, the correlation inequalities 
proved in ref. 19, Section 5, are valid for the expectation functional [[.~ as 
well. 

5. INCREASE OF THE G R A N D  C A N O N I C A L  CORRELATION 
F U N C T I O N S  

Proving the increase of the finite-volume correlation functions along 
the T-limit sequence turns out to be an elusive undertaking in the represen- 
tation (4.1)-(4.2) and (4.3)-(4.4). However, (4.1)-(4.2) and (4.3)-(4.4)can 
be brought into a more convenient form. At least for the strictly neutral 
GCE, the proof of the increase of the correlation functions is then 
straightforward. For the CE, see the remarks in Appendix B. 

First recall some simple algebra, namely 

(ei~+e-,~o)M= ~ ei(M 2k)~ (5.1) 
k = 0  

Upon integrating (5.1) over an interval of length 2~, all terms in the 
sum integrate to zero unless M =  2N, in which case the term with k = N 
contributes the value 2~(2N)!/N! 2. Along the same lines we find 

N!-21)~I2N=(2N)! l l--f ~ d(p((~ei~~162 2N) (5.2) 
2~ 

We define 

OA[G (P] --2fA :cos[~b(r) + ~03: K(d3r) = )"3 [~b] e ~ +  T* [~b] e -'~ (5.3) 

The variables A, ~b, and ~o will occasionally be dropped when there is no 
risk of confusion. Introducing the abbreviation (1/2~) S ~  g(~p) &o = ~, we 
can write the neutral canonical partition function (3.9) as 

Z(N, A) = (2N)!-1 (oZN) (5.4) 
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The strictly neutral grand canonical partition function (2.6b) becomes 

Z(A) = (cosh(zO A) > (5.5a) 

By the above-mentioned fact that the ~0 averages of odd powers of O 
vanish, we have (sinh(zO)> = 0. Hence (5.5a) is identical to 

~(A) = (exp(zOA) > (5.5b) 

which is easier to handle. 
Following the same pattern, the correlation functions for the stictly 

neutral ensembles similarly can be brought into a more convenient form. 
Defining 

~-+,,-(~b;g~ -= 1-I :ei(r 1-I :e i(~b(rk)+tP)" (5.6) 
j e ,/V'+ k e J V  

(the arguments ~b and ~o will be dropped from ~,+,.  occasionally) we 
obtain from (4.1)-(4.2) 

p(,N+]A) =Z(N,A)-I(2[N_ft])!-I  (~n . . . .  02[N hi> (5.7) 

and (4.4) becomes 
~)(A) ~, --1 2h n+,n=-(A) <Z ~,+,, exp(ZOA)> (5.8) 

Upon expanding the exponential function in (5.8) into a Taylor series, for- 
mally one generates additional terms, as compared to (4.4). All additional 
terms average to zero, however, for the reasons mentioned at the beginning 
of this section. 

We may now notice that the representation (5.8) has the form of a 
formal thermal average of a continuum plane rotator model. We can thus 
summarize: The strictly neutral GCE is obtained from the mean neutral 
one via the replacements ~b(r) --* ~b(r) + q) and ( . )  ~ ( .  >. 

At this point it is clear that one can prove the increase of the correla- 
tion functions of the strictly neutral GCE by the same techniques as used 
by Fr6hlich and Park. We will give a slightly different proof below that 
does not need the interpolation argument of ref. 2. We note further that 
Proposition 4.2 now follows directly by the method of ref. 2, alternatively. 
However, the proof of Proposition4.1 does not seem to become any 
simpler after the transformation into the new representation. 

Proposit ion 5.1. The finite-volume correlation functions of the 
strictly neutral grand canonical ensemble are pointwise increasing along 
any increasing sequence A : E3, i.e., for any A ' ~  A (with A # A') we find 

otA') _(A) 
n+,n_ > ~n+,n_ 
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Proof of Proposition 5.1. The proof is patterned after a theme of 
Ginibre. (7) We have 

Z(A) ~=(A')(Q~A+',)~_ - Q(A),. ) 

(" Z 2 f i ~  = , . . . .  {exp(zOA,) 2(A) -- exp(zOA) 2(A')} ) 

= Ave(z2e~+,~_(~b; p){exp(zOA,[~; q~]) exp(zOA[~; (?]) 

-- exp(zOA [~b; ~0 ] ) exp(zOA, [3; q5 ] ) }) 

where 

l f -  1 
Ave(. )=  &p ~ f dO f dT(q~) f dT(~)(. ) 

--re 

The term in curly braces can be rewritten as 

exp{z(OA[(b; ~o] + O A[~; ~5])} 

X [exp(ZOA,\A[C~; q~])--exp(zOA,\a[~; ~5])] 

= 2 exp{Z(OA[~; q~] + OA[~; ~])}  

xexp{(z/2)(OA,\A[(); q~] + OA,\A [~; qS])} 

X sinh{(z/2)(OA,\A[(); qO]- OA,\A[~; ~])}  

The terms in the curly braces will now be 
orthogonal transformation of the field variables 
plus stretching transformation for the variables 
trigonometric identities. Define 

 0+0 
/ ~ -  2 =c~ 

2 

Under these transformations, the measures and domains 
transform as (2) 

transformed using an 
~b, 3, an orthogonal 

q) and qS, as well as 

of integration 

where ~ ( 6 [ r ] ) =  O(r), and, for periodic integrands, (7) 

2~ & ~  d~( ) = 1  da d~(-) 
~z - ~  2 ~  - - r t  - - r r  
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The arguments of the exponential functions and of the hyperbolic sine are 
rewritten by using the identities 

cos(O + go) + cos(~ + 0) = 2 cos( ,f~ q, + ~) cos( , /~ ~ + a) 

cos(~b + go) - cos(r + 0)  = 2 sin(xf~ ~ ~J + ~) sin(xf~2 ! ~ + ~) 

We observe further that only the real part of @,+,, contributes to (5.7). 
We have 

Re[-@n+,n (q~; go)] =" cos { ~ ~k[~,b(rk) + go] }: 
k ~ ~ 4/'+ ~ JV'_ 

where ~k = -t-1 for k ~ X+.  This can be transformed using the identity 

cos(~ + go) = cos( , j~  ~, + ~) cos( , f~ ~; + ~) 

+ sin(.x~-2 ! ~ + ~) sin(x/- ~ ~ + ~) 

which applies equally well if q~ + go is replaced by a sum of the form 
Y,k ~,E~ + go]. 

The rest is the standard argument of Ginibre. We expand the exponen- 
tial functions and the hyperbolic sine into their Taylor series, which have 
only positive Taylor coefficients. In the resulting multiple sum we exchange 
the field integrations and the phase space integrations in each term. The 
field integrations factorize into products of two identical real integrals, 
which are thus positive. Hence, the total sum is positive. | 

T h e o r e m  5.1. The limit 

Alim 0 (A) 3 n + , n _  ~ ~ n + , n  

for the correlation functions of the strictly neutral charge-symmetric grand 
canonical ensemble exists along any increasing sequence of domains A, and 
for all real nonnegative/~ and z. The limit is independent of the sequence 
of domains and is given by the variational formula 

~ n + , n  = m a x  ~(A) n + , n  
A 

which holds pointwise. 

Proof of Theorem 5. I. As a corollary of Propositions 4.2 and 5.1, we 
have existence of the limit along any increasing sequence of domains, and 
also pointwise convergence to the maximum. Uniqueness can be seen as 
follows. Let s ~  + and let s~-*A'(s) and s~--~A'(s) be two nonidentical 
increasing sequences of domains that converge to ~3. We can then con- 
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struct a third increasing sequence s~-+A(s) which "alternates" between 
these two, such that we can extract increasing subsequences n ~ Aa(s[n]) 
and n ~ Ab(s[n]) of A(s), with n e N, and Aa(s[n]) contains only elements 
which are in A'(s), while Ab(s[n]) contains only elements which are in 
A"(s). Since the limit of the correlation functions along A(s) and along any 
of its subsequences must be the same, we see that the limit is the same 
along A'(s) and A"(s), and thus for all increasing sequences. | 

We conclude this section with a few remarks regarding further proper- 
ties of the correlation functions. Since V is translationally and rotationally 
invariant [see (2.3)], the correlation functions have these properties in the 
thermodynamic limit. (2~ Moreover, since the limit exists for all real non- 
negative /3 and z, we can rule out the existence of a first-order phase 
transition. Recall that at a first-order phase transition the correlation 
functions have a convex continuum of limit points instead of a limit. The 
extreme points of that continuum are the pure phases; all other points 
represent mixed phases. 

APPENDIX  A. Q U A N T U M  S Y S T E M S  OF D IST INGUISHABLE 
PARTICLES 

In the following we summarize how essentially the same formalism 
goes through in the case of quantum systems with Boltzmann statistics. 
Only the basic ingredients are presented. For further details on the 
representation see the articles by Siegert (6) and Fr6hlich and Park (2) and 
also the books by Glimm and Jaffe (13) and Simon. (16) 

The Hilbert space for a finite neutral system is Jt~ 
2 N  @i=1 L2( A, d3rj) �9 The Hamiltonian H (u) is as in (2.1), with m~=m for all 

j, and with ipj[2 = _hZV 2 for 0-Dirichlet data at the boundary of Aj. Then 
( N )  , , exp(- /~H (u)) is trace class for fl >0.  Let PA ,(rl,..., r2u; rl,..., r2u) be the 

resolvent kernel of e x p ( - f l H  Cu)) on A2N• A 2'~, and define 

2N 2N ~N)(rl,'",r2N)=--fA P(ff)~ 6(rk--rk) ]-I d3"~ " (A.1) 
2N k = l  j = I  

Then Q(N, A) ~)~]u) is the quantum analog of (2.4a), with Q(N, A ) =  
~A2,, x~ ~ cl6Ur. 

The Siegert representation of (A.1) that is analogous to (3.8) is 
obtained from the Feynman-Kac formula (13'16) and the subsequent 
application of the Gaussian functional representation. Let bA,~(r, r'; de)) be 
the path space measure on • ~3 for the Wiener process with trans- 
ition function exp(~hzv2/2rn) conditioned by co(z = 0 ) =  r and co(z = f l )= r', 
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with r and r' in A. Here, N3 is the one-point compactification of R3. (16) Let 
U(m(r) be given by (2.3) with rj replaced by o)j(r) for all j =  1, 2,..., 2N. The 
Feynman-Kac formula represents the resolvent kernel P(AU~ ) as 

p(N)tr . '  , A,/~t=l~'"~ r2N~ rl~...~ r2N) 

2:, H PA,~(rj, rj, do)j) exp & U(N)(r) (A.2) 
j= l  

from which the corresponding representation for Z follows. 
The Hilbert spaces ~_+ 00 are now constructed from 

L2(~ 3 x [-0, fl], d3r dr) instead of L2(R 3, d3r) as in the classical case. The 
kernel of the corresponding bilinear form is U =  V ( r - r ' ) 6 ( r - r ' ) .  This 
gives (2,6) 

-- Jo dr u(N)(r) = i(-- 1) j+l  'JO exp 

where ( -}q denotes the average with the 

dT ~((L)jC~];"C)}:/q (A.3) 
Gaussian measure with 

covariance • and mean 0. The Wick ordering is the same as in the classi- 
cal case. (Notice that in the present paper the interaction V depends only 
on the relative distance between particles. For more general V see Fr6hlich 
and Park. (2)) 

It is now obvious that in the quantum case the same structure is 
obtained for the expressions of the correlation functions as in the classical 
case if one makes the replacements 

:exp[+_i(~(r)]:~fPA,~(r,r;do~):exp +_i & ~b(o)[r]; z) �9 (A.4a) 

( . )  ~ ( - ) q  (A.4b) 

In particular, with the abbreviation 

~A(O)=--fAd3rfo PA,a(r,r;&o):exp{if~drqb(oo[r];r)}: (A.5) 

the canonical partition function 2 becomes 

Z(N, A) = N!-2 Tr e-an(u) = N! 2(1 ~1[ 2N)q (A.6) 

The restricted grand canonical partition function is 

~ ( A ) =  ~ z2NZ(N, A ) =  (Io(2Z []~-Al))q (m.7) 
N=0 
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For the sake of brevity, the (now obvious) expressions for the Siegert 
representation of the particle density correlation functions are omitted. The 
q~-averaged Siegert representation will be given below. 

Proposition A.1. The quantum mechanical particle density 
correlation functions /5~ A'N), _ and =,+,n_,"(A) defined by the replacements 
(A.4a)-(A.4b) in (4.1)-(4.2) and (4.3)-(4.4), respectively, are bounded by 

and 

~(nA, N )  ~" f j 2 h D h f l V  
, " ~ Y O  ~ 

n + , n _  

as in the classical case. 

Proof of Proposition A.2. One has to copy the steps given in the 
proofs of Propositions 4.1 and 4.2, except for one additional estimate, 

f~/SA,~(r, r; d~) ~< fa P ~3 ~(r, r; dco) = (2um/flh 2) 3/2 

which is standard (see, for instance, ref. 2). This estimate has to be 
amended in the first step in either of the proofs of the classical proposi- 
tions. | 

Next we define 

#A [~b; ~03 = /~A[~b] e '~ + i?* [~b] e -'~ (A.8) 

which is the quantum analog of (5.3), and 

~ ,  ..... (~b; (p)= 1~ f_ PA,~(rk, rk; do)k) 
k e , # +  ~ ~g'_ 

x:exp{iak[;~ e)(OJk[ZJ;V)&+~O]}" (A.9) 

We concentrate now only on the grand canonical correlation functions. 
Analogous to the classical case, we obtain 

~(A ) = (exp(zE} A ) ) q (A. 10) 

and 

O(A) = ~ ( A )  t (z2,~ exp(zOA))q 
n + , n  \ n + , n  

We can now state the following result. 

(A.11) 
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Proposition A.2. The quantum mechanical finite-volume particle 
density correlation functions of the strictly neutral grand canonical 
ensemble are pointwise increasing along any increasing sequence A ,~ ~3, 
i.e., 

~(A') > ts(A) 
n + , n  ~, n + , n _  

for any A' ~ A. 

Theorem A.1. The limit 

n + , n _  ~ ~ t z + , n _  

of the quantum mechanical density correlation functions of the strictly 
neutral charge-symmetric grand canonical ensemble exists along any 
increasing sequence of domains A, and for all real nonnegative fi and z. 
The limit is independent of the sequence of domains and given by 

. . . .  = max ~(A) 
n + , n _  

A 

which holds pointwise. 

The proofs are essentially identical to those given in Section 5. 

APPENDIX B. SUBADDITIVITY OF THERMODYNAMIC  
POTENTIALS 

The closely related problem of the existence of the thermodynamic 
functions is now briefly commented upon. For the sake of brevity, only the 
classical systems are treated. 

Fr6hlich and Park (2) used the existence of the thermodynamic limit of 
the correlation functions for arbitrary increasing sequences of domains A to 
conclude likewise the existence of the thermodynamic limit of the grand 
canonical pressure, and of other related thermodynamic functions along 
arbitrary increasing sequences of domains. It is of interest to prove the 
existence of the thermodynamic limit of the thermodynamic functions 
without the recourse to the correlation functions. 

If one is satisfied with proving this for sequences of standard cubes (2~ 
(or more generally for van Hove sequences), a nice argument due to 
Griffiths (9) is sufficient to prove subadditivity of the canonical free energy, 
respectively superadditivity of the grand canonical potential. The argument 
applies to strictly as well as mean neutral systems. 
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The sub(super)additivity can be recovered in the Siegert representa- 
tion along the lines of Section 5. For the mean neutral GCE this was done 
in ref. 2. For the strictly neutral GCE the proof is essentially identical to 
the one given in ref. 2, with only the slight modifications already needed in 
Section 5. For the neutral CE the proof is an interesting variant and will 
be given below. 

It should be noted that Griffiths' proof of subadditivity is much 
simpler than the one based on the Siegert representation. The idea of giving 
the proof of subadditivity using the Siegert representation is more of con- 
ceptual interest, namely to have a base from which one may start in order 
to prove a stronger result: strong subadditivity of the canonical free energy 
(if this holds at all). For both grand canonical ensembles the corresponding 
result is strong superadditivity of the finite-volume grand potential. This 
can indeed be proved (see below) along the lines of Section 5, but it seems 
hard to prove it by an argument as simple as Griffiths'. The strong super- 
additivity allows one to prove the thermodynamic limit for more general 
increasing sequences of domains without invoking the correlation 
functions. 

P r o p o s i t i o n  B.] (Griffiths). The finite-volume canonical free 
energy F(N, A ) =  - /3 l log Z(N, A) of charge-symmetric systems is sub- 
additive in the sense 

F(N' + N, A' w A)<~F(N', A')+ F(IV, A) 

for A ' ~ A = ~ ,  and N', N i n  N. 

Proof of Proposition B.I. Obviously it is sufficient to prove 

Z(N' + N, A' w A) >1 Z(N', A') Z(N, A) 

Using (5.4) and (5.3), we see that 

Z(N' + N, A' w A)=(2[N'  + N])! ~ "/(L)2(N'+N)N' X ~ A ' u A  I 

N ' + N  

2 
k - - O  

(2EN, + N _ k ] ) ! - I  (2k)!-i  {~2(N'wN k ) ~ 2 k \  
\ v  A '  V A /  

Odd powers do not occur, according to the remark following (5.1). It is 
easily seen (for instance, by exchanging the field averages and the space 
integrations) that each term in the sum is positive (unless either A' or A is 
the empty set, which is uninteresting). As such, we find a lower estimate for 
Z(N'+ N, A 'w A) by keeping only the term with k = N in the above sum. 

822/66/5-6-13 
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In order not to overload the ensuing expressions, let us define the abbrevia- 
tions 

(2IN'  + N ] ) !  1 (s = j VA'vo A 
(2N')! -1 02AN'=J 

(2N)! l O Z U = y  

Furthermore 

and finally 

O A[fb; ~o] + O A[~; (P] = 2X 

OA [~b; ~0] - OA [~; (~] = 2Y 

M! IxM = 5f(M), 

We then obtain the estimate 

M! - 1 yM = / / / ( M )  

Z(N' + N, A' w A) - Z(N', A') Z(N, A) 

= < J > - < j > < y T >  

= Ave(J[~b; q)] - jE~b ;  q)] J l [ ~ ;  ~] )  

~> Ave(J[~b; r [af[~b; ~0] - a U [ ~ ;  ~ ] ] )  

N 

= 2 ~. a v e ( j  [~b; q) ] 2*~ I N -  m ] + 1 ) J//(2m - 1 )) - A 
m - - 1  

where Ave has been defined in Section 5. Note that the last step is just 

N ( 2N )x2EN m]+ly2m-t 
(X+ y)ZN--(X-- y)ZN=2 • 2m--1 

m = l  

Now notice that we can rewrite O[~b; ~0], X, and Y by using again the 
orthogonal (plus stretching) transformations for the ~b and q~ variables and 
the trigonometric identities, as in the proof of Proposition 5.1. Indeed, all 
ensuing steps are now the standard steps as described in ref. 7, and as 
already remarked in the proof of Proposition 5.1, yielding A >~ 0. | 

Proposit ion B.2. The finite-volume grand potential PA IAI = 
/~-1 log 3(A) of the (mean or strictly) neutral charge-symmetric systems is 
strongly superadditive, i.e., 

log 3(A' w A) + log Z(A' c~ A) ~> log ~(A') + log ~(A) 
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Proo f  o f  Proposi t ion  B.2. We give only the initial steps up to the 
point from which the proof proceeds exactly as the one of Proposition 5.1. 
Also, only the strictly neutral version is formulated; the mean neutral one 
is basically the same by the replacements mentioned in Section 5. 

We define 

Z O  A, \ (A,  r~A) = . ~  

Z O  A , n A  = 'J~ 

Z O  A\(A,  r~A) ~-- 

and rewrite 

ff(A' u A) 2(A' c~ A) - -~(A') 3(A) 

= Ave{exp(zOA, ,~A[~;  q0])exp(ZOA,~A[~; (~]) 

-- exp(ZO A,[O; Cp]) exp(ZO A [~; ~])} 

= Ave{exp(N[~b; q)]) exp(~[~b; (p] + ~[~; ~])  

The expression in the large square brackets is identical to 

2 exp{�89 (p] + ~ [ ~ ;  0])}  sinh{�89 ~o] - N[~; ~b])} 

We have arrived basically at the same structure as encountered in the proof 
of Proposition 5.1. The remaining steps that show B >~ 0 are now clear, and 
are omitted. I 

We now see that, for the grand canonical potential, strong super- 
addifivity and superadditivity require essentially the same kind of proof. 
(Superadditivity is obtained by setting A ' n  A = ~ . )  The term representing 
the integration over A ' n  A does not introduce new structures. 

For the canonical ensemble, on the other hand, it seems that the proof 
of subadditivity does not have an immediate generalization to obtain 
strong subadditivity. The estimates needed to show increase of the correla- 
tion functions and the estimates needed to show strong subadditivity are 
almost the same. Hence, it seems promising to invest some further effort 
into this problem. Progress may, however, come slowly. 
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